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Abstract 

The generators of the Lie algebra of  the symplectic group sp(21~, R) are, recurrently, 
realized by means of  polynomials in the quantum canonical variables Pi and qi. These 
realizations are skew-Hermitian, the Casimir operators are realized by constant multiples 
of  identity elements, and, depending on the number  of  the canonical pairs used, they 
depend on d, d = 1, 2 . . . .  , n free real parameters. 

1. Introduction 

The object of  this paper is to present a large class of realizations of the 
Lie algebra of  the real symplectic group in the Weyl algebra, viz., through 
polynomials in quantum canonical variables qi, Pi with various good properties. 

For physical relevance of canonical realizations of Lie algebras in general we 
refer to the review articles Cordero and Ghirardi: (1972) and Wolf (1975) and 
the references therein. As to the symplectic group, we remember only that it 
occurs in physics as a subgroup of general canonical transformations, namely, 
of the group ISP(2n, R)  of inhomogeneous linear transformations which leave 
the commutation relations of  n canonical pairs [Pi, qi] = 5iiz, [qi, q]] = 
[Pi, Pi] = O, i,] = 1, 2 . . . . .  n invariant (Wolf, i975; Moshinsky, 1973). The 
Lie algebra sp(2n, R )  is the dynamical algebra of  the n-dimensional harmonicat 
oscillator (Cordero and Ghirardi, 1972). 

The proposed canonical realizations have common features with those of  
real forms of the other classical Lie algebras An,  Bn, Dn presented in Havllgek 
and Lassner (1976) and Havlicek and Exner (1975a). The realizations are re- 
currently defined by means of 2n - 1 canonical pairs and a canonical realization 
of the algebra sp(2n - 2, R)  with one free real parameter. Using, for realization 
of the auxiliary Lie algebra sp(2n - 2, R) ,  either the trivial one or the realization 
defined by the same formulas, etc., we obtain a set of  realizations of sp(2n, R).  
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Realizations of this set are in one.to-one correspondence with the sequences 
(d; 0 . . . . .  0, a n_ d + x . . . . .  an), d = 1, 2 , . . . ,  n, ai E R; these sequences we 
call signatures. The generators of  sp(2n, R )  in a realization with signature 
(d; 0 . . . . .  0, a n - d  + 1 . . . . .  an) lie in the Weyl algebra W2N(ct) where 
N(d) = d(2n - d), i.e., they are polynomials in N(d) canonical pairs. AU re- 
alizations are Schur realizations, which means that every Casimir operator is 
realized by a complex multiple of  the identity element and all realizations are 
skew-hermitian with respect to an involution defined on the Weyl algebra. Two 
realizations characterized by different signatures cannot be transformed from 
one to another by means of endomorphisms of the Weyl algebra. 

The number N(d)  = d (2n - d) of  pairs used in the construction of the 
realizations with signature (d; 0 . . . . .  0, an_or + l . . . . .  an) is smallest for d = 1 
when N(1) = 2n - 1. Of course, this is not the minimal number of canonical 
pairs that allows a faithful realization of sp(2n, R) .  The well-known minimal 
realization r l  of sp(2n, R )  is given by the following expressions: 

qiPj + ½5#, iqiqj , ipiPj , i ,] = 1 . . . . .  n (1.1) 
where n canonical pairs are used. On the basis of  the result of  Joseph (1974, 
Lemma 1) it could be proved for n t> 2 that in any realization r of sp(2n, R )  
in the quotient division ring O2(2n_  2) o f  W2(2n_ 2) (i.e., by means of 
rational functions in 2n - 2 canonical pairs) 

T(z) = T1 (z) : ~z~, xz • c 
holds for any Casimir operator z ofsp(2n, R)  (Havli~ek and Lassner, 1976a). 

So, the possibility of obtaining realizations of sp(2n, R )  in which Casimir 
operators are realized by expressions other than in realization ~1 would appear 
only in WZN or D2N with N >~ 2n - 1. The mentioned one-parameter set of 
realizations with signatures (1; 0 . . . . .  0, an) in W2 (z n - 1 ) shows that N equals 
just 2n - 1 and that canonical realizations are given by polynomials. Further, 
in these realizations, e.g., the quadratic Casimir operator C(2) depends on the 
parameter C~n, ~'(C (z)) = - 2 ( a n  2 + n2), whereas for the realization ~1 one finds 
~-1(C(2)) = _n  2 _ In. 

The fact that these realizations are still Schur realizations is not accidental, 
since it could be proved that in W2(2n_ 1) any realization ofsp(2n,  R)  is a 
Schur realization (HavliSek and Lassner, 1976a). 

In Section 4 we show how this "minimal" one-parameter set of  realization 
of sp(2n, R )  can be obtained by means of the one-parameter set of  minimal 
realizations ofgl(2n,  R )  given in our paper (Havli~ek and Lassner, 1976). We 
discuss a formula very useful for constructing canonical realizations of any 
finite-dimensional Lie algebra. 

Some considerations determine, for any compact classical Lie algebra, the 
minimal number of  canonical pairs needed for skew-Hermitian realizations. 

2. Preliminaries 
In the Lie algebra of  the symplectic group, i.e., the group of linear trans- 

formations of the 2n-dimensional vector space that left invariant the bflinear 
form n 

(xiy - i -  x- iy  i) (2.1) 
i=1  
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we choose a basic consisting of  n(2n + 1) generators X~ a = -eae~X-_~ 
a, fl = - n  . . . . .  - 1 ,  1 . . . . .  n satisfying the commutation rules 
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[X~, X~ v] = 6~'rX~ ~ - 66~X¢ v + e~efi JX~'-~ + e~e.y~L~X; -~, 

e a  = s g n  a (2.2) 

A 2n x2n matrix representation is 

(X~a)v6 = 6 v a 6 ~  - ec~efi_c~86_~v (2.3) 

A canonical realization of  a Lie algebraL is a homomorphism of  L in the Wef t  
algebra W2N, the associative algebra over C with identity generated by 2N 
elements qi, Pi, i = 1 , 2  . . . .  , N with commutation relations 

[Pi, qi] = 6if l  

The homomorphism r extends naturally to a homomorphism (denoted by the 
same symbol r) of  the enveloping algebra UL of  L into W2N. 

If  in a realization o f  L every Casimir operator, i.e., every element from the 
center o f  the enveloping algebra o f  L ,  is realized by a multiple o f  the identity 
element, then the realization is called a Schur  realization. Two realizations r 
and r '  of  L in W2N are called related if an endomorphism 0 of  W2N exists 
such that either 0 • r = r '  or 0 • r '  = r. In W2N we define an involution 
induced by 

P+ = - P i ,  q+ = qi (2.4) 

A canonical realization r of  the real Lie algebra L is called skew-Hermitian iff 
r(x) + = - r ( x )  for all x E L. 

3. Canonical Realizat ion o f  sp(2n, R )  

Theorem 1. Let Z/] be a canonical realization of  sp(2n - 2, R )  in 
W2m. Then the generators 

} ---~ 

4 =  
x,-= 

X n n  = 

X~n n =  

~ =  

i, k L t =  

qiP] - e i e j q - i P - i  + Z~ 

q l (q  " P + n - i r e ) -  e lqop_ j + Z%qk 

- p ]  - e iq_ ip  o 

- 2 p o  

2qo(q . p + n - ia) + elZ~ l qlqx 

--qoPo -- q " P -- 0 -- ire). 

- ( n - -  1) . . . . .  - 1 ,  1 . . . . .  n -  1 

(3.1) 
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where c~ E C and q - p = qoPo  + q k P x ,  define a realization o f s p ( 2 n , R )  
in W2(2,1- 1 +m). This realization has the following properties: 

(i) The realization is skew-Hermitian if c~ is real and if Z//is skew- 
Hermitian. 

(ii) The realization is a Schur realization ifZ/i is a Schur realiza- 
tion. 

(iii) Two realizations (3.1) with different parameters are nonrelated. 
(iv) Two realizations (3.1) differing only in the realizations o f  

sp(2n  - 2, R )  are related if and only if these realizations of  
sp(2n  - 2, R )  are related. 

Proof .  The verification that the generators (3.1) fulfil the commutation 
relations (2.2) of  sp (2n ,  R )  and that they are skew-Hermitian under the in- 
volution defined by (2.4) is straightforward and will be omitted here. In the 
proof of  (ii)-(iv) we use two assertions that are easily provable using the 
relation [qp, qk  pS] = (k  - s)qk p s for each canonical pair occuring in W2N. 

Asser t ion  1. l f x  ~ W2N commutes with Pi (or, respectively, qi)  then x does 
not depend on qi (Pi). 

Asser t ion  2. Assume that for x E W2N there holds 

[ q l P l  + " ' ' + q N ' P N ' ,  x]  = m .  x 

for some m = 0, +1, -+2 . . . .  where N'  ~<N. 
Then 

x = ~ ak l .  qkpl  
lc,,l 

l~-- I=_m 
where 

O~klqkp ~ =-- O~ki . . " XN'q . . .lN', " qk  1 . . . .  q~VN'pl~ . . . p~,~' 

k -  l = - k l  + ' " + k  N'  - II . . . . .  1N' 

and am do not depend on ql ,  • •., q N ' , P l ,  " • .,pAr' 
(ii) Let Y be an element from the center of  the enveloping algebra o f s p ( 2 n , R )  

in its realization induced by (3.1). By definition Y commutes with all gener- 
ators o f s p ( 2 n ,  R ) .  First, we consider the consequence of  this fact using only 
generators that do not depend on zi]: 

[Y, Xn.n] = 0, i.e., [Y, Po] = 0 (3.2) 

[Y, X2/] = 0, i.e., [Y,  pj] + e/[Y, q - j P o ]  = 0 (3.3) 

[Y, Xr~] = 0, i.e., [Y, 2qoPo + q/p/] = 0 (3.4) 

From (3.2) it follows, owing to Assertion 1, that Y does not depend on qo. 
Therefore Y can be written in the form 

Y =  ~ 7rP~ (3.5) 
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with 

7~ = E aklqkP 1 
k,l 

where c~l are polynomials in Z~. We show that only a°o can differ from zero. 
For 7r relation (3.4) gives 

[qjPj, 7r] = 2r%, r = 0, 1 . . . .  (3.4') 

Taking (3.3) for the zeroth power in P0 we obtain further 

[7o, Pi] = 0 ,  / = - ( n  - 1) . . . . .  - t ,  1 . . . . .  n i 

and, owing to Assertion l ,  7o does not  depend on qi" 

70 = ~ e~°lp l 
/ 

Equation (3.4')  in combination with Assertion 2 leads immediately to 

o i 
vo = ~oo(Z~) 

since the condit ion k - l = --l_(n_ 1) . . . . .  l n -  1 = 0 necessary for c~°1 to be 
nonzero is fulfilled only for l - (n  1) . . . . .  ln - l  = 0. l f w e  take (3.31) for the 
first power in Po we obtain 

[7 t , p / ]  + ei[7o, q - / ]  = 0 

which, due to Assertion 1, implies 

7,  = I ;  ~ l p  ~ (3 .s ' )  
1 

Equation (3.4 ')  and Assertion 2 give, for the difference k - l = - l _  (n-  i) 
- .  - • - l n -  1 the condit ion l - ( n -  1) + - - • + I n -  1 = - 2  which cannot be fulfilled 
for non-negative integers I's. Consequently all the coefficients c~t in (3.5')  must 
be zero, i.e., 

7 1 = 0  

Putting 71 in (3.3) taken for the second power in Po we get by the same 
arguments 7z = 0, and so on. Thus we can show that Y = c ~  is a polynomial  
in the generators ZO of  sp(2n - 2, R)  only. Hence from the condit ion that Y 
commutes with the remaining three types of  generators xi/, Xfn , X-nn ,  which 
contain the generators zi i  it follows that Y---- ?t • 1. X ~ C i f Z ' /  form a Schur- 
realization and (ii) is proved. 

In the proof  o f  (iii) and (iv) we use very similar arguments. Let O be an 
endomorphism of  the Weyl algebra W2(2n 1 +m) which connects two realiza- 
tions (3.1) 

O ( ~ )  : X~; a,/3 = - n  . . . . .  - 1 ,  1 . . . . .  n (3.6) 

where the realization ~ depends on ~ and z~ and the realization X~ depends 
on a and Z}. From the equations (3.6) we use first only three types 

0(2~-n) = X~- n, i.e., O(Po) = Po (3.7) 
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O(X~ = XT, i.e., a(pj + eiq_jpo) = P/+ e]q-iPo (3.8) 

O(J(n)=xn, i .e . ,O(qOPO+q "p+8"~)=qOPO+q "p+o~'{  (3.9) 

NOW we turn to O(qi) and determine it from its commutation relations with 
(3.7)-(3.9). Because of (3.7) 

[O(qi) - qi,Po] = 0 

holds which, owing to Assertion 1, implies that [O(qi) - q i ]  does not depend 
on q0- We denote this element again by Y and can write 

Y = O(qi) - qi = E v r  " / o  

with 

7r = ~ arkl " qkpl 
k , l  

where ~ l  are polynomials in ZS.. From equation (3.8) we obtain 

[r ,  p j+  ejq_jVo] = 0 (3.8') 

and from (3.9) it follows that 

[qe" Pe, %] = (2r + 1)% (3.9') 

A comparision with (3.3) and (3.4') shows that we have the same problem as 
in the proof of (ii). The only difference is the factor (2r + 1) in the right-hand 
side of (3.9') instead of 2r in (3.4'). Using the same argument as in the proof 
of (ii) one finds Y = 0 since with the factor (2r + 1) instead of 2r the necessary 
condition for a~t ~ 0 reads k - t = 2r'+ 1, which cannot be fulfilled even for 
a°o . So we get O(qi) = qi and it follows then immediately from (3.7) and (3.8) 
that O(pi ) = Pi. Therefore (3.9) turns into 

[O(qo) qo]Po = (c~- ~). ~ (3.10) 

which in the Weyl algebra, where negative powers in Po do not occur, can be 
f\dfilled only if 6 = c~. This proves (iii). From (3.10) we get further that 
O(qo) = qo because of the absence of nonzero zero divisors in the Weyl algebra. 
So we assume 6 = c~ and show (iv) as follows. Since the canonical pairs from the 
subalgebra W2m commute with the remaining 2n - 1 canonical pairs in 
W2(2,~-l+m), O(a) for a E W2m cannot depend on these remaining 2n - 1 pairs 
because of Assertion 1. Thus 0 restricted to W~m must be an endomorphism 
0 of Wzm. Therefore the relations (3.6) O ( ~ )  = ~ taken for X// imply 

t~(Z;:) = Z~: (3.1 I) 

On the other hand if 2~ and Z/i are related, i.e., there exists an endomorphism 
0 of W2m such that (3.11) holds, then the identical extension of 0 to an 
endomorphism O of W2(2n-l+m) yields (3.6), i.e., X~ and ~ are related; so 
the proof is completed. 



C A N O N I C A L  R E A L I Z A T I O N S  O F  T H E  LIE  A L G E B R A  sp(2n, R)  873 

The obviously inducing character of Theorem 1 gives rise to the construction 
of d-parameter sets of  canonical realizations of  sp(2n, R). For this purpose let 
us define "signatures" as the (n +/)-tuples (d; 0 , . . . ,  0, an_d+r, . . . ,  %),  where 
d = 1 ,2  . . . . .  n and a i are real numbers 

Theorem Z To every signature (d; 0 , . . . ,  0, ~ - d + l ,  -- -, an) there 
corresponds a canonical realization of  sp(2n, R) in W~(a), N(d) = 
d(2n - d) defined as follows: (a) (1 ; 0 , . . . ,  0, an) denotes the realization 
(3.1) of sp(2n, R) where a = an and Z~ = 0. (b) (d;0 . . . . .  0, a n - d  +a . . . .  , an) 
d > I denotes the realization (3.1), where a = an and the realization 
of  sp(2n - 2, R) has the signature (d;O . . . . .  0, a n_ d + 1 . . . . .  % - 1 ) -  
For these realizations it holds that 

(i) The realizations are skew-Hermitian. 
(ii) The realizations are Schur realizations 

(iii) Two realizations are related if and only if their signatures are 
the same 

2 follows immediately from Theorem 1. The number of  canonical Theorem 
pairs is 

n 

Z ( 2 k - 1 ) = d ( 2 n - d )  
k=n --d+ 1 

Remark. For property (iii) it is of  course assumed that W2N(d) is naturally 
embedded in W2N(d') i f d  < d'.  

4. Concluding Remarks 

A. If  we consider the generators X~ given by (3. t )  as the basis o f  a linear 
space over C, i.e. if we replace sp(2n, R)  by its complexification sp(2n, C), 
then all assertions of  Theorems 1 and 2 are also true with exception of  skew- 
Hermiticity, which has no sense for complex Lie algebras. The parameters 
a i, i = n - d + 1 , . . . ,  n, then can be taken from C since the restriction to real 
parameters was caused only by skew-Hermiticity and other parts o f  the proof 
do not depend on this restriction. So, together with the results from Havli~ek 
and Exner (1975a) and Havlf6ek and Lassner (1976) series of  canonical 
realizations with the same properties described here for sp(2n, C) are given for 
all the four fundamental series An, Bn, Cn, Dn, of the Caftan classification of  
complex simple Lie algebras. 

B. A very well-known method of  getting, for an arbitrary Lie algebra L 
with a basis x 1, . . . ,  x n, a canonical realization that is bilinear in qi and Pi 
starts with a N x N  matrix representation X ~ = ( X ~  of the generators x ~ of  L 
and uses the formula 

N 

~'(xC~) - ~ ' ~ =  Z qiX~oP] (4.1) 
i,]=l 

Formula (4.1) already used by Schwinger in 1952 for the Lie algebra su(2) was 
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generalized and used for Lie algebras of noncompact groups [U(6, 6)] in hadron 
classification by Dothan et al. (1965) with the help of  Hermann and Feynman 
(see related remarks in Dothan et al., 1965. As pointed out by Cordero and 
Ghirardi (1972) in the review article, some properties of  formula (4.1) restrict 
strongly its generality. So, the number N of  canonical pairs depends on the 
existence of  a N x N  matrix representation of  the Lie algebra L. Further, the 
realizations by bilinear expressions in qi and Pi give only a small subset of  all 
possible canonical realizations and the minimal realizations are usually not of  
this type. 

It is possible to generalize formula (4.1): The commutation relations among 
r(x ~) will be conserved if we substitute qiP] by Eii satisfying the commutation 
relations of  the Lie algebra gl(N), i.e., if 

[Eij, Ekl] = 8jkEiz -- 6tiEkj (4.2) 

then 
N 

r(x a) = ~ X~o.Eij (4.3) 
i , j=l  

fulfil the commutation relations of  tile algebra L. Whereas in the literature for 
Eij there were often used qiPj or, because of skew-Hermiticity qiPj + ½6ij, we 
shall stress the possibility of  taking other realizations ofgl(N) for Eij. So we 
can use, e.g., the canonical realizations ofgl(N) given in Havli6ek and Lassner 
(1976) and among them the one-parameter set of  minimal realizations in 
Wz(N-O [see footnote 2] which reduce the number of  canonical pairs in 
comparison to those used in (4.1). 

The canonical realizations ofsp(2n, R) (3.1) with Z} = 0 can be got by (4.3) 
using just the mentioned minimal one-parameter set of  realizations ofgl(2n, R) 
and the matrix representation (2.3) of  the generators of  sp(2n, R). 

As the matrix representation (2.3) ofsp(2n, R) is real and the realization of  
gl(2n, R) is skew-Hermitian, the realization of  sp(2n, R) defined by (4.3) is 
skew'- Hermitian, too. 

C. To take a representation of  L by real matrices is not, of  course, the only 
possibility by means of  (4.3) to get a skew-Hermitian realization o f  L. The 
suitable choice of a representation of  L by NxN-dimensional complex matrices 
in combination with a suitable non-skew-Hermitian realization ofgI(N, R) can 
lead also to a skew-Hermitian realization o f  L. If we are interested, at the same 
time, in the realizations with the smallest number of  canonical pairs, we have 
to use a matrix representation with the smallest dimension N. For example, 
taking the fundamental n-dimensional (2n-dimensional)skew-Hermitian repre- 
sentation o f L  =su(n) [=sp(2n)] [see footnote 3] and the realization ofgl(n, R) 
[gl(2n, R)] given by 

1 , . 1 • l • 
2 EUv  = q t ~ v  + ~6lav" E N #  = - P # ,  E taN  = q u ( q u P u  + ~ N  - z c O  E N N  = - q v P v  - - ~ ( N  - 1) + tc~, 

#, v = 1 . . . . .  N - 1, c~ E ~ [eq. (11) in Havli~ek and Lassner (1975)]. These realiza- 
tions are skew-Hermitian and they are Schur realizations. 

3 The compac~ form of the "algebra C n from the Caftan classification. 
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Ei/ = ½~iPj + qiP/ - qjPi - qiql) 

for which Ei ~+ = Eli holds, we obtain a skew-Hermitian realization of  
su(n) [sp(2nt] in W2n (W2. 2n). 

These realizations are minimal skew-Hermitian realizations o f  the Lie 
algebras su(n) and sp(2n), i.e., realizations with the smallest number of  canoni- 
cal pairs among all skew-Hermitian realizations. The followifig considerations 
show that in ~¥2(n-- 1 ) ([412(2n-- 1)) rio skew-Hermitian realization ofsu(n)  
[sp(2n)] exists. Joseph (1972, Theorem 4.4) has showed that  no skew- 
Herrnitian nontrivial realization of  a compact  Lie algebra is a Schur realization. 
It was shown, however, that all realizations o f  the Lie algebra A n _ 1 in W2( n _ 1) 
are Schur realizations (Joseph, 1972; Simoni and Zaccaria, 1969). Consequently, 
the same assertion takes place for any real form of An - 1 including su(n) and 
therefore a skew-Hermitian realization of  su(n) in W2(n-j )  does not  exist. The 
same assertion is valid for sp(2n) in W2(2n- 1) because, as we mentioned in the 
Introduction,  any realization ofsp(2n,  R )  in W2(2n- 1) is a Schur realization 
and sp(2n) is another real form of  the common complexification sp(2n, C). 

Since, it was proved in Havlf~ek and Exner (1975b) that minimal skew- 
Hermitian canonical realizations of  the Lie algebras o(n) exist in W2(n-1), the 
problem of  the existence of  these realizations is solved completely for all 
compact  classical Lie algebras. 
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